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High-PermittivitY Dielectrics in Waveguides and Resonators

JEAN VAN BLADEL, SENIOR MEMBER, IEEE

Abstract—Resonators and waveguides containing a region of high

dielectric constant are considered. The dielectric constant is fist

assumed to be infinite, but is later given a high, but lidte value.

Perturbation formulas are derived for the resulting shift in either

the resonant frequency of the resonator or the wavenumber of the

waveguide mode.

I. INTRODUCTION

M ATERIALS of high dielectric constant and low

loss-factor are now available to the microwave

community. Typical values of the dielectric constant are

10 for alumina substrates, 33–38 for temperature-stable

ceramics containing zirconates, and 100 or more for

materials such as rutile or strontium titanate [1], [2].

Consider a cavity containing a dielectric of high dielectric
constant e, and a given resonant mode therein, the lowest

for example (Fig. 1). The resonant wavelength is of

the order of the typical dimensions L and Ld of the

cavity. Now let c, increase without limit. The resonant

wavelength in the dielectric remains of the order of La,

while the resonant frequency approaches zero. Expressed

more quantitatively: a) kdi.1 approaches a value aLd,

where a is a coefficient of order one; b) the wavenumber

in the dielectric approaches a limit k = 2~/~d iel =
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Fig. 1. Resonant cavity containhg a dielectric.

2Z /aLa; and c) the wavenumber in vacuo ammoaches a

value ~/n = (I/n) (27r/aL~). Here, n =
index of refraction of the dielectric. It is

resonant frequency, given by u/c = kjn,

value

(c;~lzis the

seen that the

approaches a

(1)

It is the purpose of this paper to calculate a second-

order correction term for (1), i.e., to obtain the first two

terms in a series

f= :+$+”””. (2)
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With such an expression, -better values of the resonant

frequency can be obtained. The method implies that the

series converges fast, i.e., that its first two terms are a

good representation of its value. In practice, the dielectric

sample must be large enough, given the value of c,. If

the sample is too small, the dielectric “loses control,”

and perturbational techniques of the “small-sample” type

should be used [3]. When applicable, the method repre-

sents a substantial saving in computation time when a

broad range of values of ty is under consideration, e.g.,

when the influence of small fluctuations in the value of

e, is investigated.

II. GENERAL FORMULAS FOR THE RESONANT CAVITY

The resonant electric eigenvectors in a cavity containing

a medium of variable dielectric constant e, satisfy the

equations [4]

1
– curl curl E = 72E
c,

unx E=O, on the metallic walls AL. (3)

The E vectors are real. Their associated magnetic eigen-

vectors are of the form l/v cud E. In the configuration of
Fig. 1, the dielectric consists of air and a region of dielectric

constant c, = n*. We shall use capital letters for the fields

in the dielectric and Iowel case letters for the fields in the

air region. With this notation, (3) becomes

– curl curl E + k2E = O

—curlcurle+~e = 0. (4)

Equation (4) is complemented by boundary conditions
on the perfectly conducting walls S. and by the require-

ment that the tangential components of the electric field

and its curl be continuous across the S interface. For high

values of e,, the fields approach limits satisfying

—curl curl EO + IC02E0= O

I—curl curl e. = O

I div eo = O. (5)

The subscript O refers to the asymptotic condition n = ~.

For n high, but not @finite, the fields and wavenumbers

take the form E = EO + El, e = eo + el, k = ~o + IcI,

where the terms with subscript 1 are perturbation terms.

Insertion in (3) yields, for small perturbational cor-

rections,

—curl curl El + lco2E1= —2koklEo

1 kot
—curl curl el = — — e.n2

\ div el = O. (6)

Equation (6) is complemented by the boundary con-

ditions mentioned above, which hold for the O and 1

fields separately. Notice that the “tangential” conditions

on S also imply satisfaction of the “normal” conditions

U.*EO = O

(7)

In order to solve (6), it is necessary to know lcl, the

shift in wavenumber due to the finite character of e,.

This quantity can be calculated directly from E. and eo,

without explicit solution of (6). The calculation is ef-

fected by applying a well-known Green’s theorem to the

air region:

//.7[– e,. curl curl e. + eo. curl curl e,] dV

air

. /1[(u. x el) *curl eo – (u. x eo) “curl e,] dS

Is

kc?——~ L!.(eO)’ dV (8)

air

where use has been made of (6). Similarly, the dielectric

region yields

///
[–El. curl curl EO + EO.curl curl El] dV

diel

——

/.!.!
[– (u. X El) “curl EO – (u. x 2L) -curl E,] dS

s

= Zkokl
1.

(EO)2 dV. (9)

diel

Adding (8) and (9) together causes the surface integrals

to cancel because of the boundary conditions along S.

There remains

~ “=-xJJJ(e0J2dv/lv(EJ2dv)“0)
air diel

This is the desired relationship for the shift in k, which is

seen to be proportional to l/c, = l/n2. Having found kl,

it is now possible to solve for el and El from (6). Both

perturbation fields are evidently proportional to l/e,.

III. VERIFICATION ON A PARTICUI,AR RESONATOR MODE

As an example of application, we consider one of the

modes of the cavity depicted in Fig. 2. The modes can be

obtained by separation of variables. Our choice falls on

y+l
ez=zcosz~sinu —

dd 1
sin ‘z

h

‘V=-w+wsin:cosu?sin?
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Fig.2. Resonant cavity inthe form of aparallelepiped.

y–1 T2
Ez= –~%&cos~sinv-_j-- sin —

h

‘~=%H6Y+wlsin:c0sv+in:

where

(ii)

(
~2 ~2

)

=Z 112

( )

#? 1/2

~= _.— —— 1 and v= kz–$–~ 1.
nz d2 h2

The resonant wavenumbers for arbitrary n are given by

the transcendental equation

n2utgu + vtgv = O. (12).

We have solved this equation for the geometrical

parameters d = 1.71 and h = 2,61. The (exact) results are
given in Table I. The quantities of interest are the di-

mensionless parameters M and V1 = kl/n. = u1/c; where

vi is proportional to the resonant frequency. Nc$ice that

this frequency decreases for increasing e,, as mentio~ed

in Section 1, The results denoted as pert. (for perturba-

tion) are obtained from (10). Application of this formula

requires knowledge of the EOand eo fields, which can easily

be derived from (11) by setting v = r/2 and u = (k212–

T2/4)112 [see (11) and (12)].

TABLE I

RESONANT WAVENUMBBRS FOR A CAVITY

nz: : I d(exaot) k/,(pert. ) >#(exebct) lJ(p3rt. )
.

2.25 2.5053 2.5220 1.6702 1,6813

4 2.5987 2.6048 1.2993 1,3024

9 2,6617 2.6628 0,8872 0,8876

16 2.6829 2.6833 0,6707 0,6708

a 2.7097 2.7097 0 0

Q\\$)iey
02 \ \\ \.”

c
air

(a)

(b)

Fig. 3. (a) Cross section of a waveguide containing. a dielectric.
(b) Resonant cavity derived from the wavegude.

The first two terms in the expansion for id are

id= 2.7097- Y. (13)

It is seen from Table I that exact and perturbed values

are in excellent agreement for n2 = 16, and are still not

too far apart for n2 = 2.25.

IV. GENERAL FORMULAS FOR WAVEGUIDES

In each region of the waveguide shown in Fig. 3(a),

the modal components are of the form [4]

= At(zy)e~7’

= Bt (zyz) ejr; (14)

ivhere K is the wavenumber relative to the region. We shall
resewe ,the notation A;, Bi (i, = X,U,Z) for the components

in the dielectric, and denote the analogous components in

air by ai, bi. The various components satisfy

V.V2A; + (k+ –~2)Ai = O, in the dielectric

( .)
jj2

VaV2ai+ —–72 ai=O; in air.
~2

(15)

These equations are complemented by the usual boundary

condition on the tangential components of A and B along

boundary curve c, and by the boundary conditions on the
,.

metalhc boundary CW, i.e., A. = dBJdn = O.
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Consider first the modal components for n’ = co. They

satisfy

VL.2A; + (k2 – y2)Ai = O, in the dielectric

V$U2aoi— ~zao~ = O, in air. (16)

When C, is finite, these components are modified by per-

turbational terms Ali and al;, which are seen, by substitu-

tion in (15), to satisfy

VtiV2A1i + (k2 – 72)Ali = – 2ii@lAoi

~:
VZU2a1i— -y2a1i = — ~ aOi. (17)

In deriving these equations, we have assumed that ~,

the propagation constant, is held constant. To solve (17),

it is necessary to obtain an expression for kl, the shift in

wavenumber k. Here, as usual, a Green’s theorem must be

introduced. The simplest method is perhaps to start with

the superposition of a wave of type (14) and a similar

wave with e–~~zas a phase factor. This gives a total field

of the form

E = A. cos ~zu$ + j sin yzA,. (18)

Expressions of this kind can be written for the O fields and

the 1 fields separately. In both cases, E can be interpreted

as a resonant field for the volume bounded by the wave-

guide wall and the metallized end planes z = O and

z = T/~ [Fig. 3(b)]. The E field given In (18) has zero

divergence, so that – curl curl E can be replaced by V2E.

We shall now apply the vector Green’s theorem

///
[–a-curl curl b + b-curl curl a] dV

—
- /! [(u. X a) -curl b – (u. X b) curl u] dil (19)

s

to the air volume in Fig. 3(b), having set a = eo and

b = el. Because Veo = O and V2el = – (ko2/n2) eo, this gives

J...(eo.V2e1 – el.V2eo) dV

%ir

ko’—.— //1eo.eodV~?
sir

k$ 3r
— —— JJ[a,~ + ( ja,,)2] dS
‘—nz~.y

—— IJJ[(u. X eo) . curl e, – (u. X e,) curl eo] dS.

s

(20)

.

Similarly, in the dielectric region,

and V2EI = —k?E~ — 21c&E0,

!//
[E0.V2E, – E,. V2EO] dV

diel

35

where V2E0 = —lcozEo

– – 21cJcl~—
27 II

[A02 + ( ,jA0,)2] dS

——
//

– [(u. x EO) -curl E, – (u. X E,) *curl EO] dS.

s
(21)

Adding (20) and (21) together causes the surface

integrals to cancel out because of the boundary conditions

on S. There remains

lcl=-:2

.(.(/ / )[so?+ ( @d2] dS /“ [A02 + ( .iAJ2] dS .

air d iel

(22)

This is our fundamental formula. By use of (22), the

dkpersion curve for arbitrary values of e, = n’ can be

obtained by starting from the curve for n2 = m, drawn

once and for all. From a point A of this curve, we set out

a length AB = h = a/n2, where the value of a can be

calculated from (22). Point B is now a point of the curve

n2 # w. The accuracy of the so-obtained dispersion curve

increases with increasing n2. Calculation of a is the main

problem. It must be effected for each point A, and it is

therefore interesting to obtain, without increase of labor,

a second point of 2 for each A. This is possible by noticing

that curves 1 and 2 are locally parallel for high values

of n2. Therefore (Fig. 4)

A“=+3A=”(3.+’23)
The formula breaks down at cutoff (~ = O, point M),

where the tangent is vertical. In the vicinity of ill, curve

1 can be approximated by a parabola:

k – kJf = pyj.

For high values of n’, curve 2 is almost parallel with 1,

‘i

L_-l!!c
2
/, 1

,> “
“2=-

B=<: _ ‘

P’ A

/’

11
/

NM k

Fig. 4. Obtaining the dispersion curve for nz # co from the curve
fornz = ~.
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Fig. 6.

d

Fig. 5. Cross section of a rectangular waveguide.
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and we write MN = BPM2, which implies that

‘M= w’:’(?)’2

Exact dispersion curves for the m = O mode of a rectangular
wavegmde half filled with dielectric.

TABLE II

WAVENUMBER k FOR 50-PERCENT DIELECTRIC FILLING (~ = 1)

mode m ‘=0 (w~=O ) : mode III =1(V? =0) mode m =0(%1 =1)-.

n2 ~(k4.)exact (Jr.l)p.rt (@)exact (k@)pert. (k~)exact (k~)pert.

2.25 ]1.8165 1. 826k ~ 0.9331 0.5542 ] 2.1397 2.lEJt2

4 I1.9106 1.9150 / 1.1677 1.05%2 I 2.236o 2.244,

9 11.9772 1.9782 I 1.4352 1.4532 I 2.3oO3 2.3019

16 1.9999 1.9999 1.5724 1.5857 2.32I6 2.3220

m 2.0288 2.0288 1.7562 1.7562 2.3480 2.3480

TABLE III

WAVENUMBER hiFOR THE m = O IVIODE

I 20.% filling (=O.41) 104 fillinE(L=O.2J!)

# ~+ - +=., ~
‘“ ~-”1tq=o

exact
(k ) (k ) (kh (kh ‘&&= (I&pert. exact pert. exact pert.

9 3.6167 3,7146 4.0986. 4.1938

25 4.0652 4.0821 4.4573 4.4702

36 4.1369 lt.1453 4.51.16 4.51’78

100 4.2360 4.2371 4.5861 4.5869

400

& 4.2888 4.2888 4.6258 4.6258

6.73o2 7.2526 7.%42 7.8682

7.2729 7.5398 7.9266 8.0713

7.9265 7.9576 8.3509 8.3666

8.1320 8J338 8.4903 8.4912

8.1925 8.1925 8.5328 8.5328

The ordinate in M is therefore proportional to I/n, and is

bound to be a worse approximation than the lengths

MN, AB, and AC, all of which are proportional to l/n2.

V. VERIFICATION ON THE MODES OF A RECTANGULAR

WAVEGUIDE

The modes of a rectangular waveguide with dielectric

slab (Fig. 5) can be obtained by separation of variables

[5]. The solutions are shown in Fig. 6. For small values of

d/21, the lowest mode is a TE mode with components in-

dependent of x (the m = O mode). For higher values of

d/21, the lowest mode has components proportional with

sin rz/d or cos mr/d (the m = 1 mode). We shall not

wrjte down the field components and dispersion relation-

ships explicitly, but will only quote numerical results. Con-

sider first a guide half filled with dielectric (L = 1) and

compare the exact cutoff values (point N in Fig. 4) with

the perturbed values, given, respectively, by /cl = 2.0288

[1 – (0.2243/n’)] for them = O mode, and kl = 1.7562

[1 – (1.5532/n2) ] for the m = 1 mode, value computed

for d = 41. Values of the cutoff wavenumber appear in

Table II under the heading 71 = O.

It is seen that the agreement is excellent for the m = O

mode, but is somewhat worse for the m = 1 mode. This is

reflected by the first-order correction terms which are,

respectively, 0.2243/n2 and 1.5532/n2. It is to be expected

that smaller correction terms give better accuracy, as the

second-order terms should be of the order of the square

of the first-order ones. We have also given the value of id

for a typical point A of the dispersion curve (point

71= 1).

The excellent agreement obtained for 50-percent

dielectric filling deteriorates, as expected, when the height

of the dielectric slab decreases. This is apparent from a

comparison of the results of Tables II and III. At 10-

percent filling, the results of nz = 25 are some 8 percent

off in absolute value at cutoff, but the error on lcl/k, the

relative frequency shift, is higher and reaches 50 percent.

Clearly, the method breaks down completely for lower

values of n2 and is therefore unsatisfactory for handling

the modes of, for example, the microstrip in a box con-

figuration (where the filling coefficient is typically 10

percent ). The higher modes of the microstrip are very

simiiar to those of the waveguide of Fig. 5 and should

therefore behave in a similar manner for high values of

e, [6].
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Noise Considerations in Self-Mixing lMPATT-Diode Oscillators

for Short-Range Doppler Radar Applications

MADHU-SUDAN GUPTA, MEMBER, IEEE, RONALD J. LOMAX, SENIOR MEMBER, IEEE, AND

GEORGE I. HADDAD, FELLOW, IEEE

Afr.stract-The influence of the oscillator noise on the minimum

detectable signal of a Doppler radar with a self-mixing IMPATT-diode

oscillator is evaluated. For very short-range radars, it is the AM

noise which limits the signal-to-noise ratio and thus the range.

I. INTRODUCTION

THE PURPOSE of this paper is to investigate the influ-

ence of oscillator noise on the performance of a self-mix-

ing CW short-range Doppler radar in order to determine

the oscillator noise requirements for a given application,

or alternatively, to find the minimum detectable signal for a

given oscillator. The effect of the AM, FM, and video

noise of a self-mixing IMPATT-diode Oscillator used in a

short-range radar on the signal-to-noise ratio and the

minimum detectable signal will be evaluated, and a simple

expression for the amplitude of the detected Doppler

signal will be given. The effect of l/~ noise is not included

in this analysis and is not considered to be appreciable

for a well-designed silicon IMPATT oscillator.

IMPATT diodes are particularly attractive mixers for

two reasons. First, they can generate oscillations and can

be used as “self-pumped” frequency converters, thus

eliminating the need for a separate oscillator [1]. Second,

they are negative conductance nonlinear devices and

therefore offer the possibility of a large conversion gain

[2]. IMPATT diodes have been used as self-oscillating fre-

quency converters in two different modes: that in which

the signal is uncorrelated to the “local oscillator” output

[1] (the usual mixer application) and that in which the

Manuscript received February 12, 1973; revised May 24, 1973.
This work was supported by the U.S. Army Electronics Command
under Contract DAAB07-71-C-0244.

M.-S. Gupta is with the Department of Electrical Engineering,
Massachusetts Institute of Technology, Cambridge, Mass. 02139.

R. J. Lomax and G. I. Haddad are with the Electron. Physics
Laboratory, Department of Electrical and Computer Engineering,
University of Michigan, Ann Arbor, Mlch. 4S104.

signal is derived from the local oscillator output [3], [4]

(as in Doppler radars). While the noisiness of the former

is adequately described by the noise figure of the mixer,

perhaps a more appropriate characterization of noise per-

formance in the second case is the signal-to-noise ratio or

the minimum detectable signal for the oscillator-mixer

combination.

CW Doppler radars may be classified as long-range

radars and short-range ones. To be specific, a short-range

radar is one in which the two-way transit time rt of the

signal between the antenna and the target is very small

compared to the period l/.fd of the Doppler shift frequency.

Long-range radars have received the most attention in

the literature and the influence of oscillator noise on radar

performance has been studied by Raven [5] and others.

The present study differs from these earlier studies in

two important respects: the oscillator and mixer are not

separate units and the radar range is smaller (of the order

SIGNAL LOW-PASS OSCILLATOR

PROCESSING FILTER MIXER

[01

[b)

1
LOW-PASS OIOOE

FILTER Zc --f PACKAGE,

ANO
‘D

I CAVITY
er ‘L ;;

SIGNAL
n

1 ANO RF

PROCESSOR
1

CIRCUIT —

(cl ‘

Fig. 1. Schematic diagram and models for a short-rang: CW
Doppler radar with a self-mixing oscillator. (a) Radar system
with a self-mixing oscillator. (b) Load-variation-detector model.
(c) Injected-signal model.


