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High-Permittivity Dielectrics in W aveguides and Resonators

JEAN VAN BLADEL, SENIOR MEMBER, IEEE

Abstract—Resonators and waveguides containing a region of high
dielectric constant are considered. The dielectric constant is first
assumed to be infinite, but is later given a high, but finite value.
Perturbation formulas are derived for the resulting shift in either
the resonant frequency of the resonator or the wavenumber of the
waveguide mode.

I. INTRODUCTION

ATERIALS of high dielectric constant and low
loss-factor are now available to the microwave
community. Typical values of the dielectric constant are
10 for alumina substrates, 33—-38 for temperature-stable
ceramics containing zirconates, and 100 or more for
materials such as rutile or strontium titanate [17], [2].
Consider a cavity containing a dielectric of high dielectric
constant e and a given resonant mode therein, the lowest
for example (Fig. 1). The resonant wavelength is of
the order of the typical dimensions L and L; of the
cavity. Now let e increase without limit. The resonant
wavelength in the dielectric remains of the order of Ly,
while the resonant frequency approaches zero. Expressed
more quantitatively: a) Maia approaches a value alg,
where « i a coefficient of order one; b) the wavenumber
in the dielectric approaches a limit % = 2x/Agier =
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Fig. 1. Resonant cavity containing a dielectric.
2n/aLy; and ¢) the wavenumber #n vacuo approaches a
value k/n = (1/n)(2n/aL;). Here, n = (&)¥? is the
index of refraction of the dielectric. It is seen that the
resonant frequency, given by w/¢ = k/n, approaches a
value
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It is the purpose of this paper to calculate a second-

order correction term for (1), i.e., to obtain the first two

terms in a series
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With such an expression, better values of the resonant
frequency can be obtained. The method implies that the
series converges fast, i.e., that its first two terms are a
good representation of its value. In practice, the dielectric
sample must be large enough, given the value of . If
the sample is too small, the dielectric “loses control,”
and perturbational techniques of the “small-sample” type
should be used [37]. When applicable, the method repre-
sents a substantial saving in computation time when a
broad range of values of ¢ is under consideration, e.g.,
when the influence of small fluctuations in the value of
¢ is investigated.

II. GenErAL FormuLAs For THE REsSONANT CAvVITY

The resonant electric eigenvectors in a cavity containing
a medium of variablc dielectric constant e satisfy the
equations [4]

»

1
—curl curl E = y2E
€r

u, X E =0, (3)
The E vectors are real. Their associated magnetic eigen-
vectors are of the form 1/» cuil E. In the configuration of
Fig. 1, the dielectric consists of air and a region of dielectric
constant ¢, = n?. We shall use capital letters for the fields
in the dielectric and lower case letters for the fields in the
air region. With this notation, (3) becomes

on the metallic walls S,.

—curlcurl E + KB2E = 0

2

—curl curl e + % e = (. (4)
w

Equation (4) is complemented by boundary conditions
on the perfectly conducting walls S, and by the require-
ment that the tangential components of the electric field
and its curl be continuous across the S interface. For high
values of e, the fields approach limits satisfying

—ocurl curl Ey + k2E; = 0

—curl curl ¢, =

(5)

diV ey = 0.

The subscript 0 refers to the asymptotic condition n = .
For n high, but not infinite, the fields and wavenumbers
take the form E = E,+ Ey, e =¢ey+ e, k =k + ky,
where the terms with subscript 1 are perturbation terms.
Insertion in (3) yields, for small perturbational cor-
rections,

—curl curl El + k02E1 == —ZkoklEo

—curl curl e,

I
|
|

&

L div e; = 0. (6)
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Equation (6) is complemented by the boundary con-
ditions mentioned above, which hold for the 0 and 1
fields separately. Notice that the “tangential’” conditions
on 8 also imply satisfaction of the “normal” conditions

un'Eo =0

un‘El

li

1
= (u,-ey). (7
In order to solve (6), it is necessary to know ki, the
shift in wavenumber due to the finite character of e,.
This quantity can be calculated directly from E, and e,,
without explicit solution of (6). The ealculation is ef-
fected by applying a well-known Green’s theorem to the
air region:

/ / [—ey-curl curl e, + e-curl curl e, ] dV

air

// {(u, X e)-curl ¢ — (u, X ) -curl e;]dS

]

where use has been made of (6). Similarly, the dielectric
region yields

(8)

/:/ [—E;-curl curl E; + Ey-curl curl E; ] dV

diel

// [— (u, X Ey)+curl Ey — (u, X Eo)-curl E;]dS
S

Uity / f / (Eo)?dV.

diel

I

(9

Adding (8) and (9) together causes the surface integrals
to cancel because of the boundary conditions along S.
There remains

" o (/f/ W““’/ JIf <Eo>2dV) (10)

diel

This is the desired relationship for the sbift in &, which is
seen to be proportional to 1/e, = 1/n% Having found k;,
it is now possible to solve for e; and E; from (6). Both
perturbation fields are evidently proportional to 1/e,.

III. VERIFICATION ON A PARTICULAR RESONATOR MODE

As an example of application, we consider one of the
modes of the cavity depicted in Fig. 2. The modes can be
obtained by separation of variables. Our choice falls on

T L . y+1 . =z

€, = ~ COS —- sin u sin
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Fig. 2. Resonant cavity in the form of a parallelepiped.
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The resonant wavenumbers for arbitrary n are given by
the transcendental equation

(11)

ntutgu + vigy = 0. (12)

We have solved this equation for the geometrical
parameters d = 1.7] and h = 2.6l. The (exact) results are
given in Table I. The quantities of interest are the di-
mensionless parameters &l and »l = kl/n.= wl/c; where
vl is proportional to the resonant frequency. Notice that
this frequency decreases for increasing e., as mentioned
in Section I. The results denoted as pert. (for perturba-
tion) are obtained from (10). Application of this formula
requires knowledge of the Ey and e, fields, which can easily
be derived from (11) by setting v = =/2 and v = (k?I* —
#2/4)12 [gee (11) and (12)].

TABLE I
RESONAN’I‘ WAVENUMBERS FOR A CAVITY

2
nzg l (exact) kt(pert.) #e(emct) j/!(pert.)
2.25 2,5053 245220 1.6702 1,6813

Y 2,5987 2.6048 1.2993 1,302%

2,6617 2,6628 0,8872 0,8876

16 2.6829 2,6833 0,6707 0,6708
oo 2.7097 2.7097 ) 0

W

==

(b)

(a) Cross section of a waveguide containing a dielectric.
(b) Resonant cavity derived from the waveguide.

Fig. 3.

The first two terms in the expansion for k! are

0.4225

bl = 2.7097 — ——. (13)
. w

It is seen from Table I that exact and perturbed values
are in excellent agreement for n? = 16, and are still not
too far apart for n? = 2.25.

IV. GENBRAL FORMULAS FOR WAVEGUIDES

In each region of the waveguide shown in Fig. 3(a),
the modal components are of the form [4]

E. (zyz) = Az(xy)ehz
H.(zyz) = B.(ay)e™*

E.(xyz) = - " (jy grad A, — jouu, X grad B,)e?
& —
= A.(xy) e
1 g . .
H,.(ayz) = ——— (Jv grad B, — jweu, X grad A,)edre
K° =y

B (zyz) e (14)

where « is the wavenumber relative to the region. We shall
reserve the notation A;, B; (i = 2,y,2) for the components
in the dielectric, and denote the analogous components in
air by a;, bi. The various components satisfy

Vot A+ (B2 — )4, =0, in the dielectric

2

Va2 @ + (— - 72> a; =0 in air.

= (15)
These equations are complemented by the usual boundary
condition on the tangential components of 4 and B along
boundary curve ¢, and by the boundary conditions on the
metallic boundary Cw, i.e., A, = dB,/on = 0.
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Consider first the modal components for n2 = «, They
satisfy

Vi, 2A; 4+ (B2 — 42 A4; = 0, in the dielectric

Vo to: — v?a0; = 0, in air. (16)
When e, is finite, these components are modified by per-
turbational terms A;; and ay;, which are seen, by substitu-

tion in (15), to satisfy

Vo lAy + (B — ¥) Ay = — 2kokiAcs
Jec2
Vol — Y@y, = — —Z Qos. (17)
7

In deriving these equations, we have assumed that v,
the propagation constant, is held constant. To solve (17),
it is necessary to obtain an expression for k,, the shift in
wavenumber k. Here, as usual, a Green’s theorem must be
introduced. The simplest method is perhaps to start with
the superposition of a wave of type (14) and a similar
wave with e~/v2 ag a phase factor. This gives a total field
of the form

E = A, cos yzu, + jsin y24,. (18)

Expressions of this kind can be written for the 0 fields and
the 1 fields separately. In both cases, E can be interpreted
as a resonant field for the volume bounded by the wave-
guide wall and the metallized end planes z = 0 and

= =/ [Fig. 3(b)]. The E field given in (18) has zero
divergence, so that —curl curl E can be replaced by V2E.
We shall now apply the vector Green’s theorem

/f/ [—a-curl curl b + b-curl curl a] dV

= /f [(u. X @)-curl b — (u, X b)-curla]dS (19)
5

to the air volume in Fig. 3(b), having set a = ¢, and
b = ey. Because V’e, = 0 and V?e; = — (k?/n?) e, this gives

f / / (e0-V2er — e,-VPey) dV
kZ
Ny

k2
- n—% f// Lao® cos® vz + (jao:) - ( jaor) sin® yz]dV

air

_ /f [0 + (jan)*] dS

n? 2vy

Il

f/ [(u, X e)-curl e, — (u, X e;)-curl e;] dS.
S

(20)
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Similarly, in the dielectric region, where V2E) = —k2E,
and V2E1 = —k02E1 ht 2k0k1E0,

f f / [Eo-V'E, — Ey-VE;] dV

diel

— 21%701-2'5Y f [4o2 + (jAo)?]dS

_ / / [y X Eo)-curl By — (un X Ey) -curl E,] dS.
S

(21)

Adding (20) and (21) together causes the surface
integrals to cancel out because of the boundary conditions
on 8. There remains

ko
2n?

( [ tao2+ CGawtas / [f 4z + Gawyed ds) .

diel

kl’—‘

(22)

This is our fundamental formula. By use of (22), the
dispersion curve for arbitrary values of ¢ = n? can be
obtained by starting from the curve for #»* = «, drawn
once and for all. From a point A of this curve, we set out
a length AB = k; = a/n?, where the value of a can be
calculated from (22). Point B is now a point of the curve
n? # . The accuracy of the so-obtained dispersion curve
increases with increasing n2. Calculation of « is the main
problem. It must be effected for each point 4, and it is
therefore interesting to obtain, without increase of labor,
a second point of 2 for each A. This is possible by noticing
that curves 1 and 2 are locally parallel for high values
of n2. Therefore (Fig. 4)

— 4B(%) - ‘h)l
AC = AB(dk>A = a(dk T

The formula breaks down at cutoff (y = 0, point M),
where the tangent is vertical. In the vicinity of M, curve
1 can be approximated by a parabola:

(23)

k — ky = By~

For high values of n? curve 2 is almost parallel with 1,

Fig. 4. Obtaining the dispersion curve for n? £ « from the curve
for n? = o.
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W=7

2!

air

d

Fig. 5. Cross section of a rectangular waveguide.

3K
Fig. 6. Exact dispersion curves for the m = 0 mode of a rectangular
waveguide half filled with dielectric.

TABLE II
- WAVENUMBER k FOR 50-PERcENT DieLrctrIic Friuing (I = 1)

mode m '=0 (Xl:o) mode m ='.L(“e =0} mode m =0 (ﬂ =1)-

n2 (k‘)exact (kl)pe rt (kl Jexact (kZ)pe rt, (kz)exact (k!)pert.
2,25|1.8165 1.8264 0.9331 0.5542 2.1397 2,1642
4 11,9106 1,9150 1,1677 1.094%2 2.2360 2.2447
1.9772 1.9782 1.4352 1.4532 2,3003 2.3019
16 1.9999 1.9999 1.5724 1.5857 2,3216 2.3220
OO [2.0288 2.0288 1.7562 1.7562 2.3480 2,3480

TABLE III

WAVENUMBER kl FOR THE m = 0 MobE

20% rilling(L=0.l+2) 10% filling(L:O.ze)

t=o0 %L’: 1 =0 oo
n? Zgim ) kb ad) o) ’@3%@)
pert, exact pert, exact pert., exact pert,

9 { 3.6167 3,7146 14,0986, 4.1938

25 | 4.0652 %,0821 4.4573 L4702 | 6.7302 7.2526 7.5%42 7.8682
36 | 4.1369 4.I453 k.5116 %.5178 | 7.2729 7.5398 7.9266 8.0713
100 | 4.2360 4.2371 L4.5861 %.5869 | 7.9265 7.9576 8.3509 8.3666
%00 8.1320 8.1338 8,4903 8,4912
0 | 4,2888 %.2888 %,6258 %.6258 | 8.1925 8.1925 8,5328 8.5328

and we write MN = BPM?, which implies that

- ()2 ()
B n B8 ’

The ordinate in M is therefore proportional to 1/n, and is
bound to be a worse approximation than the lengths
MN, AB, and AC, all of which are proportional to 1/n?.

V. VERIFICATION ON THE MODES OF A RECTANGULAR
WAVEGUIDE

The modes of a rectangular waveguide with dielectric
slab (Fig. 5) can be obtained by separation of variables
[5]. The solutions are shown in Fig. 6. For small values of
d/2l, the lowest mode is a TE mode with components in-
dependent of x (the m = 0 mode). For higher values of
d/2l, the lowest mode has components proportional with
sin mz/d or cos mz/d (the m = 1 mode). We shall not
write down the field components and dispersion relation-
ships explicitly, but will only quote numerical results. Con-
sider first a guide half filled with dielectric (L = [) and
compare the exact cutoff values (point N in Fig. 4) with
the perturbed values, given, respectively, by kI = 2.0288
[1 — (0.2243/x?) ] for the m = 0 mode, and kI = 1.7562
[1 — (1.5532/n%)] for the m = 1 mode, value computed
for d = 41. Values of the cutoff wavenumber appear in
Table IT under the heading vl = 0.

It is seen that the agreement is excellent for the m = 0
mode, but is somewhat worse for the m = 1 mode. This is
reflected by the first-order correction terms which are,
respectively, 0.2243/72 and 1.5532/n2. 1t is to be expected
that smaller correction terms give better accuracy, as the
second-order terms should be of the order of the square
of the first-order ones. We have also given the value of %l
for a typical point A of the dispersion curve (point
yl=1).

The excellent agreement obtained for 50-percent
dielectric filling deteriorates, as expected, when the height
of the dielectric slab decreases. This is apparent from a
comparison of the results of Tables IT and III. At 10-
percent filling, the results of n? = 25 are some 8 percent
off in absolute value at cutoff, but the error on k,/k, the
relative frequency shift, is higher and reaches 50 percent.
Clearly, the method breaks down completely for lower
values of n? and is therefore unsatisfactory for handling
the modes of, for example, the microstrip in a box con-
figuration (where the filling coefficient is typically 10
percent). The higher modes of the microstrip are very
similar to those of the waveguide of Fig. 5 and should
therefore behave in a similar manner for high values of

& [6].
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Noise Considerations in Self-Mixing |MPATT-Diode Okxcillators
for Short-Range Doppler Radar Applications

MADHU-SUDAN GUPTA, meMBER, 1IEEE, RONALD J. LOMAX, SENIOR MEMBER, IEEE, AND
GEORGE 1. HADDAD, FELLOW, IEEE

Abstract—The influence of the oscillator noise on the minimum
detectable signal of a Doppler radar with a self-mixing iMpaTT-diode
oscillator is evaluated. For very short-range radars, it is the AM
noise which limits the signal-to-noise ratio and thus the range.

I. InTRODUCTION

HE PURPOSE of this paper is to investigate the influ-
ence of oscillator noise on the performance of a self-mix-
ing CW short-range Doppler radar in order to determine
the oscillator noise requirements for a given application,
or alternatively, to find the minimum detectable signal for a
given oscillator. The effect of the AM, FM, and video
noise of a self-mixing MpaTT-diode oscillator used in a
short-range radar on the signal-to-noise ratio and the
minimum detectable signal will be evaluated, and a simple
expression for the amplitude of the detected Doppler
signal will be given. The effect of 1/f noise is not included
in this analysis and is not considered to be appreciable
for a well-designed silicon tmpATT oscillator.
iMPATT diodes are particularly attractive mixers for
two reasons. First, they can generate oscillations and can
be used as “self-pumped” frequency converters, thus
eliminating the need for a separate oscillator [1]. Second,
they are negative conductance nonlinear devices and
therefore offer the possibility of a large conversion gain
[2]. impaTr diodes have been used as self-oscillating fre-
quency converters in two different modes: that in which
the signal is uncorrelated to the “local oscillator” output
[17] (the usual mixer application) and that in which the
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signal is derived from the local oscillator output [3], [4]
(as in Doppler radars). While the noisiness of the former
is adequately described by the noise figure of the mixer,
perhaps a more appropriate characterization of noise per-
formance in the second case is the signal-to-noise ratio or
the minimum detectable signal for the oscillator-mixer
combination.

CW Doppler radars may be classified as long-range
radars and short-range ones. To be specific, a short-range
radar is one in which the two-way transit time 7, of the
signal between the antenna and the target is very small
compared to the period 1/f; of the Doppler shift frequency.
Long-range radars have received the most attention in
the literature and the influence of oscillator noise on radar
performance has been studied by Raven [5] and others.
The present study differs from these earlier studies in
two important respects: the oscillator and mixer are not
separate units and the radar range is smaller (of the order

SIGNAL
PROCESSING

LOW-PASS
FILTER

(a)

OSCILLATOR
MIXER

LOW-PASS DIODE
FILTER 5 ¢ , | |Packace, —e, P
AND D c CAVITY Y, " e Yo
SIGNAL AND RF - : JANTENNA
PROCESSOR CIRCUIT
TARGET
{b)
LOW-PASS DIOBE
FILTER z,— | PAcKAGE,
AND z, . canity | v
SIGNAL r AND RF
PROCESSOR @ CIRCUIT

{c)

Fig. 1. Schematic diagram and models for a short-range CW
Doppler radar with a self-mixing oscillator. (a) Radar system
with a self-mixing oscillator. (b) Load-variation-detector model.
(¢) Injected-signal model.



